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ABSTRACT

Domain decomposition is an intuitive organizing princit)le for a PDE computation,

both physically and architecturally. [towever, its significance extends beyond the readily

apparent issues of geometry and discretization, on one hand, and of modular software

and distributed hardware, on the other. Engineering and computer science aspects are

bridged by an old but recently enriched mathematical theory that offers the subject not
only unity, but also tools for analysis and generalization. Domain decomposition induces

flmction-space and operator decompositions with valuable properties. Function-space

bases and operator splittings that are not derived from domain decompositions generally

lack one or more of these properties. The evolution of domain decomposition meth-

ods for elliptically dominated problems has linked two major algorithmic developments

of the last 15 years: multilevel and Kry[ov methods. Domain decomposition methods

may be considered descendants of both classes with an inheritance from each: they are

nearly optimal and at the same time efficiently parallelizable. Many computationally

driven application areas are ripe for these developments. This paper progresses from a

mathematically informal motivation for domain decomposition methods to a specific fo-

cus on fluid dynamics applications. Introductory rather than comprehensive, it en_ploys

simple examples, and leaves convergence proofs and algorithmic details to the original
references; however, an attempt is made to convey their most salient features, especially

where this leads to algorithmic insight.

*This paper is based on a series of tutorial lectures delivered at the invitation of the United Tech-

nologies Research Center during the spring of 1992.

tEmaih keyesC-@cs.yale.edu. This work was supported in part by the NSF under contract ECS-

8957475, by the United Technologies Research Center, East Hartford, CT, and by the National Aero-

nautics and Space Administration under NASA Contract Nos. NAS1-1860,5 and NAS1-19480 while the

author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE),

NASA Langley Research Center Hampton, VA 23665.





Figure 1 - Examples of domain decompositions into overlapping (left, due to

Schwarz (Ref. ,51)) and nonoverlapping (right, due to Przemieniecki (Ref. 49)) do-

mains. These examples are of historical interest, having been employed in their

original contexts to illustrate, respectively, an unaeeelerated iterative substructur-

ing method and a fully direct substructuring method.

INTRODUCTION

Domain decomposition extends the usefulness of numerical techniques for certain spe-

cial partial differential equation problems to those of more general structure. Geometrical

complexities or operator inhomogeneities that inhibit the global application of standard

algorithms often suggest natural decompositions of problem domains into subdomains of

simpler structure on which standard solvers are effective. An obvious hurdle to this ap-
proach is the specification of boundary conditions on the artificially introduced interfaces

between subdomains, upon possession of which the subdomains would trivially decouple.

Examples of such artificial interfaces, interior to the region on which physical boundary

conditions are available, are shown in Fig..tv[)
Rarely is either a stationary iteration or a direct derivation of the auxiliary con-

ditions for the interracial values from the differential or algebraic formulation of the

problem the most economical way' to proceed, though both have an extensive histories

in the mathematical and engineering literature (see Refs. 3 and 41 for earlier annotated

bibliographies). Instead, an acceleration procedure with a state vector that includes

both interface and interior values may be set up, and local solvers may be employed as

components of an approximate inverse, or preconditioner, for the overall system. For

solvers whose complexity grows faster than linearly in the number of degrees of freedom,

large problem size alone motivates decomposition and renders affordable the iteration

required to enforce consistency at the artificial subdomain boundaries. (Though we con-
fine attention to models of continuous media expressed a_s PDEs, we note that there

are developments parallel to domain decomposition in the numerical analysis of integral

equations ("multizone methods") and in the analysis of electrical and mechanical net-

works ("tearing methods"). In the latter context, Ref. 4.3 is of historical interest for its
plot of Univac execution days versus decomposition granularity.)

Apart from distinctly domain-based approaches, there are at least two means of divid-

ing a large or complex PDE problem into simpler, more tractable component problems.

One is operator decomposition, in which the inverse of a different subset of terms of the

PDE operator is approximated within each phase of an outer iteration that encompasses

all terms. Alternating direction implicit (ADI) methods are classical examples. The

other is function-space decomposition, in which a different component of the solution is
computed within each phase. Spectral methods, generalizing classical Fourier analysis,



areinthiscategory.Thoughoperatorandfunction-spacedecompositionapproacheshave
practicalvalue,theoreticalimportance,andhistoricalinterest,theymaybelessoptimal
thandomaindecompositionfromtheperspectiveof parallelcomputationbecausethey
arenotgenerallyfrugalin theirdataaccessrequirements,asweillustratebelow.

Parallel Computation in Space-Time

Domain decompositions are not fundamentally different from other types of decompo-

sition, and may, in fact, be interpreted for analysis purposes as operator or function-space

decompositions, but of special form that can be motivated by, among other things, the

memory hierarchies of distributed-memory parallel computers. Each processor in such a

system has rapid access to data stored in its own memory and slower access to data stored

in the memory associated with other processors. The cost, in time, of accessing remote

data may depend not only on the location of the data hut also on the amount of data

being simultaneously requested by all processors acting in parallel, and on the richness

of the interprocessor communication network. It is possible, in principle, to construct for

each processor-memory element a forward-pointing "data cone," in analogy to the "light
cone" of physics, that indicates how far through the computer the data associated with

that unit can propagate in a given time. Processors outside of a given cone at a given

time level cannot be influenced by data originating at its apex. Similarly, it is possible

to construct for each processor element a backward-pointing data cone that indicates

the most recent possible age of remotely originating data of which it can be aware. The

situation is represented schematically in Fig. , which is adapted from Ref. 47. (Of course,
the analogy to the light cone of physics is not a very precise one, since there are many

different data propagation speeds inside a multiprocessor computer, not just a single

speed of light. Due to distance-insensitive software overheads, data propagation speeds

are generally highly nonlinear functions of distance.) On many previous generations of

computers it was unnecessary for scientific programmers to recognize data cones, since,

in effect, there was only one cone and it had an apex angle that was effectively fully

open, modulo memory cache effects. Data access rates were assumed to be insignificant

compared to rates at which data was processed. Contemporary algorithm designers, in

contrast, must recognize that there is a time cost associated with distance. More gener-

ally, there may be different time costs associated with different routings and packet sizes,

and relative costs may vary greatly from machine to machine. As network technology

is further pressed and machine diameters expanded, the importance of such differences

must ultimately increase (unless padded by software, intentionally or unintentionally).
The solution of problems restricted to a mathematical subdomain that resides entirely

within the domain of a processor requires communication with other processors only to

set up provisional boundary conditions. In contiguity-preserving maps of grid points to

processors this information is typically found through exchanges of an amount of data

that is small compared with the amount stored locally. Furthermore, it occurs between a

number ofsubdomains that is small compared with the total. Therefore, a decomposition

that maps data onto processors in a geometrically contiguous manner leads potentially

to a low ratio of time spent communicating to time spent computing, and thus to a high

parallel efficiency. However, high efficiency is not an end in itself; the relative effectiveness

of parallel numerical methods also depends on the total number of arithmetic operations
they require, independent of communication costs. Examples of algorithms that may be

efficiently parallelized but are nevertheless ineffective in an overall elapsed time sense

abound. It is therefore important to note that decomposition by domain respects the
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Figure 2 - Parallel computation viewed as a series of events in space-time. The past

and future data cones of a single processor-memory element are shown above, and

the interacting future cones of a planar array of processor elements below.



Figure 3 The sparsity of A (discrete Poisson operator) and A-1 (discrete Green's

function) contrasted by their action on a sample &function on a two-dimensional

grid.

natural data dependencies of elliptic and time-parabolic problems.

Green's Functions as Data Dependency Graphs

The dependence of the solution at a given point on the data specified at another can

be characterized for linear problems by the Green's function (Ref. 20) for the differential

operator being inverted. A Green's function is a function of two variables, a field point

and a source point, whose magnitude reflects the degree of influence of the source point
on the field point. The strict evaluation of the solution at a field point x requires inte-

gration over all source points y for which tile Green's function G(x, y) is nonzero. If the

solution is sought only to within a given tolerance, that tolerance defines the resolution

required in the integration process. Regions in which the Green's function is small and
smoothly varying can be resolved less accurately than those in which the Green's func-

tion is large or changing rapidly. For elliptic and parabolic problems, Green's functions
decay monotonically with the distance between field and source point. Therefore, it is

natural to place on or near the processor that will compute the value of the solution at z

the forcing data at as many points "near" x as possible. ("Nearness" in this context may

be measured in an anisotropic metric if the differential operator, and hence its Green's

function, is anisotropic. An example will be furnished later.)

It has often been argued that PDEs are well-suited to parallel computation because

differential operators can be approximated with local finite differences. Assuming that

locality is preserved in the map from gridpoints to processors, this implies that the per-

fectly scalable, constant bandwidth nearest-neighbor mesh interconnect alone constitutes

a sufficiently rich communication network for PDE computation. Such an argument is

valid only if one is willing to iterate a number of times proportional to the discrete diame-
ter of the grid on which the PDE is discretized. Though elliptic finite-difference operators

are sparse, their inverses are dense, implying that the solution at every point is dependent.

upon the forcing at every other point. This elementary observation is illustrated in Fig. ,

which depicts a discrete 6-flmction forcing term at a point in a two-dimensional grid,

along with the action of the five-point discrete Laplacian with homogeneous Dirichlet

boundary conditions, and of its inverse on the same function. Thus, the rightmost plot

is a sample single column of the matrix representing the discrete Green's function.

The figure illustrates both a nonzero influence of the data at each point on the solution

at every other, and the rapid decay with distance of the magnitude of the influence. It is

algorithmically unwise to ignore the nonlocal influence, but but also unwise to resolve it

as finely as the local influence. The influence of distant points, in the tail of the Green's
function, can be "coarse-grained" and communicated on an area-averaged basis. This

role will be carried by coarse grids in the development below. On the other hand, for
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Figure 4 - A series of Green's functions, G(x, 1), for a modified gehnholtz operator
arising from implicit time discretization of parabolic problem for Eq. 2 for a source

point at the midpoint of the interval and for several k 2 = fiAt. As the limit

of infinitesimal time step is approached, the Green's function is more and more
concentrated.

commensurate accuracy, fine resolution is needed in the near field. The shape of the

Green's function is the ultimate motivation for a two-level (or a multilevel) algorithm.

The efficient assimilation of distant data via a coarse grid becomes less important as

the rate of decay of the discrete Green's function becomes more rapid. This phenomenon

occurs in implicitly time-differenced parabolic problems as the time step is made smaller,

as illustrated in Fig. , for the one-space-dimensional problem

- u" + k2u = f, (1)

arising from

OU 02U

- o (2)Ot Ox 2

on x E [0, 1] with u(0) = u(1) = 0, when we make the replacement

Ou _,(,, t) - u(x, t - ,at)
o--t-"_ At (3)

for the transient term, where k 2 -- 1�At. The Green's function

1 { sinh(kx)sinh(k(1 - y)), x < y } (4)G(x,y) - ksinhk × sinh(ky)sinh(k(l x)), x > y

satisfies

whence

- c"(=, v) + k=c(=, v) = 6(= - v), (5)

1
u(x) = G(x,y)f(y)dy. (6)

This is an instance of the modified Helmholtz operator, in which the sign of the

diagonal term agrees with the diagonal part of the diffusion term to strengthen the
diagonal dominance of the matrix operator. For sufficiently small time step the tail is
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Figure 5 - A series of adjoint Green's functions, Gt(x, 1), for a convection-diffusion

operator, Eq. 7 for a source point at the midpoint of the interval and for several

convection strengths k. As the limit of large convection is approached, the Green's
function is more and more one-sided.

insignificant, and a coarse grid brings no added advantage, as pointed out in Ref. 8.

The opposite is true of the wave Helmholtz operator, in which the diagonal term

detracts from the diagonal dominance of the diffusion operator, producing greater in-
definiteness and more oscillation of the Green's function as the wavenumber increases.

Convergence theorems (Ref. 12) indicate that the coarse grid must be made fine enough
to resolve the oscillations of the Green's function in this case.

For the important case of large first-order terms, the Green's function becomes one

sided, as illustrated in Fig. , again for a one-dimensional model problem. In this case, due

to the nonselfadjointness of the differential operator, the relevant kernel is the adjoint

Green's function. If u(x) satisfies the one-dimensional convection-diffusion equation with

constant convection coefficient k (right-to-left when k > 0),

- ku' = y, (7)

the adjoint Green's function,

1 ((ek*--l)(1--ekO-v)), x<y } (8)Gt(x'Y)- k(1-e k) × (e_:_--ek)(1--e-kV), x > y '

satisfies

- v) + kct'( , v) = - v), (9)

whence

fO
u(x) = Ct(x,y)f(y)dy. (10)

In the limit of large Ikl, the tail of the relevant kernel extends far upstream and in-

significantly downstream. Lest this seem to render a theory based on elliptic operators

irrelevant for computational fluid dynamics applications, recall that many if not most

production CFD codes operate either in a time-accurate or in a steady-state defect cor-

rection manner. In the latter, an artificially diffusive left-hand side operator is used to

drive a high accuracy right-hand side operator to a steady state. Hence, the left-hand

side operators whose inverse action is required in most CFD codes have a parabolic or

elliptic character.



In this paper,wearguethat domaindecompositionis a compellingalgorithmic
paradigmfor bridgingthegapbetweena universeof applicationsthat arephysically
hierarchicalin a continuoussense,andauniverseof parallelcomputersthat arearchi-
tecturallyhierarchicalin a discretesense.Whenthehierarchiesof theapplicationand
thearchitecturearewellmatched,theappropriatehierarchyof thealgorithmthat must
bridgethemisobvious.Evenwhenthis isnot thecase,algorithmsthat somehowtake
intoaccountthoseaspectsof themodelingprocessoverwhichtheusertypicallyhasno
control,namelytheGreen'sfunctionof thephysicsandthedataconesof thecomputer,
aredestinedto hemoreeffectivethanalgorithmsthathavenoregardfortheirstructure.

THREE SOURCES OF PARALLELISM

In the partial differential equation

/Zu = f in _ (11)

there are three potential sources of parallelism, or more generally, of ways to "divide,

conquer and combine," which is also a useful approach in sequential algorithms.

One can decompose the operator,/_ --/_1 +/_2+' • -+/ZN, and attempt to make use of

separate inversions of the different pieces. There is a variety of reasonable decompositions

of this class, of which the traditional do not use a very large N and are sequential.

Nevertheless, this type of decomposition can create phases with significant parallelism
within each phase.

Alternatively, one can decompose the space of functions in which the solution is

sought, and represent the solution as a sum of components from each subspace, u =

ul + u2 + ".. + UN. N is typically quite large in this case.

Finally, one can decompose the domain _ = I21 U _2 U ... U _N, leaving a set of
problems coupled at their boundaries, each of which is of the same form as the original.

We illustrate these decompositions on the following model PDE computation. We
consider the parabolic PDE

(_U

O--t+ (£_ + £'u)u = f(x, y) in _ with u = 0 on 0_ (12)

where

and

0 O R

c. (.. >0), (la)

Cy -- --_yay(x,y)-._y +by(x,y) , (ay > 0). (14)

If a fully implicit time discretization is used, elliptic-looking problems for spatial dis-
cretization are generated at each time step, namely,

--_ + ,£,_:-q-,Cu =]-- -I- f . (15)



Algorithms Requiring Multiple Mappings: ADI and Spectral

One method for attacking this problem is an operator decomposition of Alternating

Direction Implicit (ADI) type (Ref. 24). The compound iteration is written as

\a--_/_ £_ u(t+l/2) + f
(16)

with the iteration operator

-_ At

At£'_-l× (I At£ _ × (I+ Atf_ "_ × (I "_-£V) (17)s+--7- ') - 2 =) 2 =) - "

Upon spatial discretization, there are four sequential substeps per timestep, consisting

of two sparse matrix multiplications represented by (I- "_£v) and (I- _£_), and two

sets of completely independent unidirectional tridiagonal solves in (I + _L_) -1 and

(I + -_/2v)-1. The action of each term in/_x can be computed concurrently at different

y-coordinates, and vice versa. Hence there is significant parallelism within each substep.
Another method for attacking this problem is a spectral method function-space de-

composition (Ref. 33). One defines a set of global basis functions ¢i (x, y) and sets

N

.(x, v,t) = _ .s(t)¢i(z, v),
j=l

(18)

to get, using Galerkin's method, where (., .) is the ordinary inner product,

d u) + (6i, Z:u) (¢i, f), i 1, N._(¢;, = = ..., (19)

Upon substitution of the expansion for u,

N N

y_'(¢i,¢j)d_ j - Z(¢i,ECj)aj+(¢i,f), i= 1,...,N,
j=l j=l

(20)

which leads immediately to the system of ordinary differential equations in time:

fi = -M-i Ka + M-l g, (21)

where the mass matrix M and stiffness matrix K are defined by

M = [(¢;,¢_)], K = [(64,cCj)]. (22)

Note that M is diagonal if the Cj are orthogonal and, further, K is diagonal if the Cj are

eigenfunctions of £. In this limit, the equations for the aj(t) completely decouple. More

generally, M and K are perhaps dense. In this opposite limit, there is still significant

parallelism available in the marching of the system of N ODEs for the coefficients of

each wavenumber aj (t), since the computation to communication ratio is high within the
spectral domain.

The ADI and spectral methods are straightforward to define and implement when



thedomainfl hasanexploitabletensor-productcharacter.Irregularor non-simply-
connecteddomainsmakeit moredifficultto applymethodsbasedona singleglobal
discretization.However,themainproblemwith thesealgorithmsisnot lackofgeomet-
ricalflexibility.Fromthepointof viewof parallelcomputing,themainproblemis in
thedataexchangecostswhentheyareembeddedin a completecode.Theseandmost
operatorandfunction-spacedecompositionmethodsrequirefrequentglobalexchanges
of amountsof dataproportionalto thediscretedimensionof theproblembetween the

parallelizable phases.

In the case of ADI, the favorable mapping of data onto processors for the solution

of the tridiagonal systems with constant y coordinate is the transpose of the favorable

mapping for the constant x coordinate phase. Therefore, either one the phases will be

computed with poor parallel efficiency or a pair of global transpositions of data must

take place within every iteration. It is well understood how to carry out this transpo-

sition in a recursive way that very effectively exploits the communication channels of a

hypercube network (Ref. 39). However, the amount of data required to be exchanged

and the frequency with which the transpose must be performed maintain pressure on the

architecture of a general parallel machine as it is scaled upwards. This situation becomes

worse in three dimensions even though three-dimensional Green's functions are more

rapidly decaying than their two-dimensional counterparts. Constant-index sets of global

span may be ideal implicit aggregates in sequential FORTRAN, but not necessarily on

parallel computers.

In the case of spectral methods, the partitioning of wavenumber space that leads

to efficient parallelism (possibly including complete decoupling) in the solution for the

spectral coefficients is altogether different from the domain-based partitioning required to

assemble the physical solution from a sum over wavenumber. The physical solution may

be required periodically for convergence checks or display; moreover, in the operator-

split pseudo-spectral method as applied to convection-diffusion problems such as Navier-

Stokes, the physical solution is required at each time step for the explicit advancement
of the nonlinear convective terms. Thus, as with ADI, global exchanges of amounts of

data proportional to the overall problem size are frequently required.

It is frequently proposed that heterogeneous architectures be assembled so that each
arithmetic subtask of an overall computation can be executed on a node (or set of nodes)

most appropriate for it. For instance, matrix element assembly might be a massive

SIMD application, banded factorization and solution a vector processor application, and

ODE-integration of chemical kinetics source terms in different regions an intermediate-

granularity MIMD application. Like the ADI and spectral methods, an overall imple-

mentation composed of tasks such as these would require frequent transfers between

processors of the full data of the problem, ultimately making the interprocessor network

the bottleneck to further scalability. The domain decomposition paradigm is entirely

different. In domain-decomposed parallelism, each processing element performs all of

the operations on a subset of the data, rather than a subset of the operations on all of
the data.

An Algorithm Requiring a Single Mapping: Additive Schwarz

As an example of an algorithm for the same model problem, Eq. 15, that requires
only small to moderate degrees of global data exchange, we consider a small-overlap

version of the Additive Schwarz method of Dryja and Widlund (Ref. 22). To expose the

parallel properties of this prototype domain decomposition method, we need a modest



degreeof mathematicalmachinery,whichwekeepassmallaspossibleby considering
onlypiecewiselinearnesteddiscretizations.

Weintroducea coarsegrid on fl (whosediameter,properlynondimensionalized,is
O(1)) by cutting it into nonoverlapping subdomains of quasi-uniform size H, fit. Each of

these subdomains is further divided into mesh cells, wk,i, of quasi-uniform size h. Follow-
ing the finite element formalism, a global coarse grid function space, V H, is introduced:

V H = {v H continuous on 12, linear on each _2k, vanishing on 0f_/, (23)

together with a global fine grid function space, Vh:

V h = (v h continuous on _2, linear on each wk,i, vanishing on a_}. (24)

The accuracy of the discrete solution will be controlled by h and the granularity of the

parallel decomposition by H. Part of the beauty of the Additive Schwarz method is that

its asymptotic convergence rate depends only weakly, if at all, on h and H, leaving these

parameters at the disposal of the physics and of the parallel computing environment.

One means of obtaining such highly convergent algorithms is to introduce some over-

lap between the subdomains. For this purpose, each _k is extended to a subdomain g/_

by bordering it with fine grid cells of neighboring processors. (In practice, as little as

(O(h)) of overlap is often sufficient for good convergence performance, though conver-

gence proofs for difficult operators or geometries may require more.) Figure illustrates

a pair of nonoverlapping subdomains sharing a common interface F and an overlapped
subdomain whose boundary points lie within the interior of neighboring subdomains.

Subdomain extensions that lie outside of the physical boundary, 012 are cut off, by defi-

nition. We then define another set of function spaces, this time local:

V2=(vhEv h vanishing on and outside of 0_ } (25)

We define projection operators onto the coarse space, V H, and onto each of the fine

extended spaces, V h, by means of the same Galerkin procedure used in the spectral
method above, but with a different test space for each projection. Thus, let

U

A(u, v) = (--_, v) + (£u, v) (26)

and define ph as the projection associated with subspace Vh, i.e.,

A(P_u, v) = A(u, v), Vv e V h, (27)

and pH as the projection associated with V H, i.e.,

A(pHu, v) = A(u,v),Vv E V H. (28)

Note that computing P_u, for any u, requires solving a local Galerkin problem on f_ with

homogeneous Dirichlet boundary conditions. The discrete dimension of this problem is
the number of points of the fine grid interior to f/_. Note as well that all of the phu, k =

10
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Figure 6 - Decomposition of a square domain into square subdomains of nonover-

lapping and overlapping type (from Ref. 10).

1,2,..., K, can be found independently even though their domains overlap. Computing

pHu requires solving a coarse global problem on f_ itself. The discrete dimension of

this problem is the number of coarse grid vertices inside 0_. Hence this problem is

small, though it does require some global data exchange. Though the communication

required to form pHu is nontrivial, it need not be a sequential bottleneck like the larger

communication phases of ADI or spectral methods, since it can be performed concurrently

with the arithmetic steps of the fine mesh projections. The overall solution of the original

implicitly time-discretized system at each time step has the form

Pu = b (29)

where P -= pH + ph + ph +... + p_, and where b is the sum of the projections of ]

from Eq. 15.

To describe P in terms of matrix algebra, let the total number of degrees of freedom in

the solution vector be n, and let A be the square nonsingular n × n matrix with elements

aij = A(¢i, ej), where the ¢i constitute a nodal basis for V h. Let nk be the number

of degrees of freedom interior to the subdomain fl_ and let Rk be the n_ × n matrix of

zeros and ones that restricts the global solution vector to the interior of f/_. Then R_ is

an n × nk matrix that extends by zero a solution in f/_ to the global domain. Next, let

Ak be the nk x nk matrix with ijth element A(¢i, 8/), where the ¢i constitute a nodal

basis for Vh. Then P_ = R T(Ak)-IRkA, k = 1,..., K. Note that Rk and R T involve no

arithmetic operations, but are gather/scatter or communication routines. This defines

all but one of the terms of P. In similar notation, pH may be defined as ROT(Ao)-_RoA,

where the ijth element of A0 is A(¢i, _j), where the _i constitute a basis for V n.

R0 and RoT are weighted restriction and prolongation operators based on multivariate

interpolation. These operators involve floating point work in addition to communication.
K

Similarly, b may be defined in matrix algebraic notation as _k=o RT(A_) -1Rkf.

The transformed problem, Pu = b, is solved by a Kryiov method, such as GMRES

(Ref. 50). Because of their importance in domain decomposition algorithms, Krylov

methods are described in greater detail in a subsequent section. It is sufficient here to be

11



reminded that Krylov methods operate by applying P to a series of vectors at each time
step. Each application of P has significant parallelism, by construction. There is a set

of concurrent subdomain problems to solve, which require some nearest-neighbor data

exchange (proportional to the size of the overlap regions), and there is a single small
global problem to solve. If the data of the problem is initially mapped onto parallel

processors in accordance with the domain decomposition, no global remapping is ever
needed.

Observations and Remarks

Of the three types of decomposition, only domain decomposition obviates the need

to move large amounts of data globally. We have considered a parabolic problem. The

fully elliptic case is included if At ---, cx_ in Eq. 15. In this case, operator decomposition

still needs to proceed in time-like relaxation steps. The function-space and domain de-

composition algorithms can be applied directly to the elliptic case. Through the finite

element subspaces of subdomain-scale support, V h, and the global coarse space, V H,

domain decomposition has a function-space decomposition interpretation. Through the
projection operators, ph and ptt domain decomposition has an operator decomposition

interpretation. For problems with complex operators or geometry, a hybrid method,

such as domain decomposition within each substep of a split-operator, or operator split-

ting within a domain-decomposed framework might be the best parallel technique. The

spectral element method (Ref. 48) is a hybrid of domain and function-space decomposi-

tion that is further hybridized with operator splitting when applied to the Navier-Stokes

equations. It has been parallelized with great success (Ref. 28).

APPROXIMATING THE INVERSE OF A SUM

It has been argued above that algorithmic insight derives from thinking of the process

of solving a linearized PDE as the application of a formal inverse of the PDE operator

to the right-hand side data. In this section, we further exploit this formalism.

The bugaboo in parallelizing any implicit method is that the inverse of the sum is
not the sum of the inverses:

(A1 + A2)-lv _: A-[iv + A_lv. (30)

This contrasts with the situation of explicit methods, in which the ability to distribute

the application of operators over addition is the source of embarrassing parallelism. The

product of the sum is the sum of the products:

(At + A2)v =Alv + A_v. (31)

Explicit methods are equivalent to matrix-vector multiplications, which are readily paral-

ielized. Implicit methods are equivalent to matrix inversions (solves), which are generally

highly sequential.
Modern domain decomposition algorithms find a compromise. They are precondi-

tioned iterative methods with semi-implicit, divide-and-conquer preconditioners. They

work by combining Krylov methods (requiring only matrix-vector multiplications) with

approximate, parallelizable inverses. A profitable question is: When is the inverse of the

sum well approximated by a sum of "partial inverses"? The inverse of a sum is identical
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to thesumof partialinversesforspecialdecompositions.Forexample,given

A- = f, (32)

to be solved for u, let A have a complete set of orthonormal eigenvectors:

Ark = Akvk. (33)

Then A can be expressed as the sum of rank-one matrices:

A = Z,_kvkv_r. (34)
k

The solution u = A-if can be expressed as a linear combination of the eigenvectors by

multiplication of Eq. 32 by vt and use of the orthonormality property. The result is

U _ UkVk, where uk - x--_"
k

Now define as "partial inverses" (and we use the "-1" notation loosely) the k rank-one
matrices

1 T (36)
A-i 1 = ,_ v_vk .

Then,

u = A-'f = _ A'_lf, (37)
k

as desired. Once the eigendecomposition of A is known, each term of the right-hand

member of Eq. 37 can be found independently. Abstracting, the key steps are the de-
composition of the solution u into orthogonal subspaces, and the expression of A -1 as

the sum of projections onto these subspaces.

Note that the partial inverses do not have the full rank of the original problem. Since

the inverse action of a PDE operator is generally a computationally complex operation

to apply (polynomial in the problem dimension), any useful decomposition of the inverse

will consist of pieces that operate in subspaces of restricted dimension.

In practice, the subspaces spanned by eigenvectors in this example must be replaced

with something else. Eigenvectors are expensive to compute and, having global support,

they require too much storage. An inexpensive way to form a set oforthogonal subspaces

whose total storage requirements are the same as that of one copy of the solution vector

is to make each spanning vector zero over most of the domain. Unfortunately, subspaces

that achieve strict mutual orthogonality in this way cannot span the entire space. Func-

tions that are not zero at subdomain interfaces cannot be represented. A small subspace

can supply what is missing, possibly at the sacrifice of not being orthogonal to the rest.

This turns out to be a practical trade-off.

Consider a one-dimensional piecewise linear finite element example. The function

u(x) sketched in Fig. can be decomposed into the sum of the five functions in Fig..
Piecewise linear finite element bases for approximation of the five functions are shown

13



Figure7- A functionto bedecomposedintocomponentsinsubspacesprimarilyof
localsupport.
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Figure 8 - Decomposition of the function in Fig.

Figure 9 - Bases for the subspaces underlying the decomposition in Fig.
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Figure 10 - Illustration (by "footprint") of a hierarchical decomposition in two

dimensions, with locally uniform adaptive refinement.

in Fig.. The first four of these subspaces are mutually orthogonal. The last one is not

orthogonal to any of the others. The union of the five subspaces is a two-level hierarchi-

cal basis that spans the same space as the piecewise linear basis for the original, global

problem. Projection onto the first four subspaces consists of solving four small indepen-

dent problems together accounting for 80% of the data in the problem. The projection

onto the last subspace consists of solving one problem involving 20% of the data. This

two-level hierarchical discretization can be extended to two or three dimensions, and can

be generalized to incorporate adaptive local uniform refinement. In large, well-resolved

problems, the percentage of fully concurrent work improves. A sketch of a hierarchical

decomposition in two dimensions with locally uniform adaptive refinement in a corner is

shown in Fig..

The precise notion of orthogonality that is of greatest importance in convergence

results for domain-decomposed solution of elliptic problems is not the ordinary one,

uTu5 = 0, j _ k, but orthogonality with respect to A. This is the notion of A-conjugacy,

uTAu_ = 0, j _ k. Orthogonality based on a decomposition of local support type only

does not carry over into orthogonality with respect to A. A quantifiable measure of the

mutual orthogonality with respect to A of domain decomposition-induced subspaces is

furnished later.

Compatibility of Hierarchies of Scales

A practical degree of near-orthogonality is achieved by limiting the support of basis

vectors to individual subdomains. The resulting segregation of coarse and fine spaces is

a first step in the direction of multigrid, but domain decomposition algorithms often stop

after just one or a small number of such steps, for physical, architectural, and algorithmic

reasons. Roughly speaking, the number of intermediate scales that are desirable in the

algorithm is governed by the number of intermediate scales in the physics and in the

computer architecture. Domain decomposition algorithms have one or a few intermediate

hierarchical scales, just like the physical systems they solve and the hardware they run

Oil.

The scales present in a physical problem typically include

• the system diameter, L,

• the smallest scale of variation, _ -= minz lu(x)l/l_u(z)l, requiring resolution, and
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* one or more intermediate scales natural to functional or geometrical description of
the system.

In aerodynamics, for instance, L might be the wingspan of a vehicle, _ might be a fraction

of the boundary layer thickness on the wing, and the wing chord or nacelle diameter would

be intermediate scales on which it would be natural to develop a set of blocked grids.

The scales present in the memory hierarchy of a supercomputer include

. the global aggregate memory,

. a single floating point arithmetic register, and

* the cache size, the vector length, or the amount of local memory particular to a

processor.

It is widely appreciated that the proper adaptation of computational task size to the

intermediate scales of a supercomputer is critical to performance.

It is natural to attempt to mimic these scales in a domain decomposition algorithm,

which distinguishes

* the integral scale of the domain, O(1),

* the finest resolved scale, h, and

* an intermediate scale of subdomain diameter, H.

From the point of view of software engineering, maintaining clean data interfaces

between these scales encourages modular, adaptable code that has an object-oriented

"feel" and maintainability, whether or not it is strictly object-oriented. Algorithms that

ignore the natural hierarchies of scale may mismatch the frequency or ease of access of

data to its actual local influence. For instance, ADI methods contain implicit aggregates

(tridiagonal solves) that cluster together points at opposite ends of a domain, in the

tails of each other's Green's functions, simply because they share a common index value.

The excellent operation count efficiency of tridiagonal solves justifies this splitting on a
computer with flat memory access costs. The effÉciency of ADI must be reexamined on

a machine with nonflat memory.

From a mathematical point of view, it is natural to recur on the idea of a two-level

hierarchical decomposition. After reducing the global fine-grid problem to the union of

many local fine-grid problems and a new global coarse-grid problem, one can regard the

global coarse grid as the fine grid of a new problem, an approach that leads to multigrid.
That domain decomposition and multigrid share a number of special cases is well known,

which sets the stage for a consideration of the optimal number of levels of recursion for a

practical problem on a real piece of parallel hardware. Stopping at any number of levels

short of full multigrid can be shown to be suboptimal on theoretical complexity grounds

on serial computers. On the other hand, a study of the optimal depth of recursion

carried out on an early version of the MasPar MP-1, a massively parallel (8K) SIMD

multiprocessor concludes that the optimal number of levels is two (Ref. 2).

TRANSFORMING TO A REDUCED KRYLOV BASIS

It is not convenient to form in parallel the action of an exact inverse to a typical PDE

operator, but we have seen that computing an approximate inverse based on domain
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Figure11- Surfaceplotsof gridfunctionsof the right-handside(left) andtbe
solution(right)for amodelPoissonproblem.

decompositionisareasonablyparallelizabletask.Asiswidelyappreciated,approximate
inversescanbestrategicallyemployedaspreconditionersforiterativemethods.Krylovor
"conjugategradient-like"iterativemethodshavereceivedlotsofattentionin recentyears
becauseof a keyparallelproperty:their abilityto relyonmatrix-vectorproductsand
vectordotproductsaloneto drive a linear system towards convergence. Krylov methods

are algorithms for solving nonsingular linear systems (or singular systems with a known

null space) that terminate with the exact solution (modulo precision effects) in a finite

number of operations, like direct methods, but typically get "sufficiently close" to the
exact solution in fewer operations, like iterative methods. Krylov methods can compete

with or surpass most other linear solvers on serial computers and can substantially out-

perform most other linear solvers on parallel computers. They exemplify a widespread

algorithmic trend of "transformation to a reduced basis." Reduced basis methods at-

tempt to represent complex systems (large number of degrees of freedom) with low to

moderate numbers of degrees of freedom, without compromising essential phenomena.

They often provide for intelligent "user" input and/or problem-specific adaptation. In

the case of Krylov methods, this comes through preconditioning.

With respect to Eq. 32, in which A may now be nonsymmetric or even indefinite,

the Krylov method of Generalized Minimal Residuals (GMRES) finds an approximate
solution

U _ UlV 1 --}- U2V 2 + . - • -'{- UrnVrn (38)

by choosing the vk (generally not eigenvectors) so that they: are extensible to the full
space, attempt to capture the "most important" components of the solution in the lowest

indices, and are convenient to generate and operate with. The "convenient generation"
V mconsists of matrix-vector multiplication; the first m Krylov vectors { k}k=l span the

Krylov space

Km(A,ro)- {ro, Aro, A2ro,...,Am-lro}, (39)

where ro is the residual based on an initial guess, r0 = f- Au0. "Convenient to operate

with" means "orthonormal" in the context of GMRES; the vk are formed progressively by

a modified Gram-Schmidt orthogonalization of the components of/fro (A, r0). G MRES

chooses the uk to get the best possible fit of u in the span of {vl,v2,...,vm} while

keeping m as small as possible, for a given residual tolerance.

Scope does not permit a detailed exposition of GMRES or other comparably successful

methods (with somewhat different proportions of matrix and vector operations), such as
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Figure12- Surfaceplotsof gridfunctionsof theKrylovvectorsgeneratedfor the
GMRESsolutionofthePoissonproblemin Fig..
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Figure 13 - Iteration history for Poisson equation example, Euclidean norm of
residual.

Bi-CGSTAB (Ref. 55) or QMR (Ref. 29), but a simple illustration is effective. For ease

of visualization, we use an artificially small example of unpreconditioned GMRES on

Poisson's equation on the unit square subdivided into 8 × 8 uniform grid cells. The

right-hand side and the solution are shown in Fig..
From an initial guess of zero, GMRES forms the solution (to within one part in 105

in Euclidean norm of the residual) as a linear combination of nine Kryiov vectors, shown

in order of generation in Fig.. Each of these gridfunctions is orthogonal to the rest.

Note that the first is a simple scaling of the right-hand side. This is the steepest descent

direction from the zero initial guess. In this example, it is clear that this step picks up

the principal "DC" component of the ultimate solution. The second Krylov vector is

taken with opposite sign relative to the first, and corrects for the poor representation of

the solution in the corners of the first, and so on.
The iteration history of the Euclidean norm of the residual is shown in Fig.. The

converged magnitudes of the coefficients are shown in Fig. ; and Fig. shows the iteration
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Figure 15 - Iteration history of coefficients for Poisson equation example.

history of each individual coefficient, which appears for the first time during the iteration

at which the corresponding vector component is defined. Note that only 9 vectors were

needed in this problem of 81 degrees of freedom (boundary points included). Of course,

this problem has considerable symmetry, which GMRES exploited. Applying Gaussian

elimination to this problem would not have exploited any of its symmetry, and a solution

of any utility would require the specification of all 81 coefficients. Gaussian elimination

uses as its basis vectors in this problem the 81 unit vectors, rather than the problem-

adapted basis of GMRES.

One Krylov vector yields the exact solution to Eq. 32 if A is the identity matrix.
Less trivially, it may be proved that the closer A is to the identity matrix in any of

several senses, the fewer Krylov iterations will be required. For instance, properties

of A that can be exploited in convergence proofs include A having a small number of

clusters of eigenvalues and A being a low-rank perturbation of a multiple of the identity

matrix (a multiple of the identity having perfect eigenvalue clustering). A more refined
understanding of the rate of convergence of Krylov methods based on the details of the

eigenvalue distribution is possible; see, for instance, Ref. 54. Preconditioning may be

used to transform A towards more rapidly convergent forms. Left preconditioning solves

fi,x = ], where .4 = B-1A and ] -- B-if. Right preconditioning solves A_ = f for _',

where A- AB-1; then x = B-lk.

The model problem above was solved again with the popular incomplete LU (ILU)

preconditioning (Ref. 46) applied on the right. An incomplete factorization of A into

the product of lower and upper factors is a factorization with fill-in limited, so that the

union of the indices corresponding to nonzero entries in L and U is the same as the

set of indices corresponding to nonzero entries in A. Generally LU = A + E, where
E is a nonzero remainder matrix. In the notation of the previous paragraph, we take

the preconditioner B equal to LU, so B -1 = U-1L -1. The formation and application
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Figure 16 - Surface plots of gridfunctions of the Krylov vectors generated for the

GMRES solution of the ILU-preconditioned Poisson problem in Fig..
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norm of residual.

of B -1 are inexpensive on serial computers -- of the same order as a matrix-vector

multiplication when A is sparse. However, they lack the parallelism of a matrix-vector

multiplication, and are typically unattractive global preconditioners in massively parallel

applications (Ref. 17).

Figs. and depict information for the preconditioned case analogous to that of Figs.

and above. Notice that the geometrical symmetry of the individual Krylov vectors is

destroyed by the nonsymmetric ILU preconditioning. (We could have used incomplete

Cholesky to preserve symmetry, though GMRES does not require it.) Nevertheless,

since the new Krylov matrix, AB -1 is closer to the identity, the preconditioned iteration

converges in roughly one-half as many steps.

Typical elliptic operators do not have well clustered spectra (except for degeneracies of

symmetry), but smoothly spaced gaps between eigenvalues. Hence the overall condition

number, the ratio of largest to smallest eigenvalue, is a useful if sometimes pessimistic

characterization of the overall clustering. In a typical unpreconditioned discrete elliptic

operator, the condition number g(A) grows as the square of the ratio of the subdomain

diameter to the smallest resolved scale, g(A) .-. h -2. From a condition number point of

view, the effect of preconditioning with exact subdomain solves is to replace this severe

ratio of scales by the much more acceptable ratio of domain diameter to subdomain

diameter, tc(B-1A) ,,. H -2. Solving a coarse grid problem in addition to subdomain

problems compresses this ratio closer to O(1).
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TAXONOMY OF DOMAIN DECOMPOSITION METHODS

Recent years have witnessed a rapid evolution of algorithms having in common the

paradigm of decomposition by domain (Refs. 13, 14, 30, 31, and 40), and in some cases
little else. It is beyond our scope to review all that has taken place under the rubric of

"domain decomposition." Much of the early research is devoted to the case of a small

number ofsubdomains in which there is no need for a hierarchical formulation, since every

subdomain has good access to physical boundary data. This case has limited applicability

to parallelism, though it is a model environment for the study of interfacial treatments

that possess wider applicability (Ref. 16). There is, however, a core of development for the

case of many subdomains in which mathematical theory and computational experiment

continue to leapfrog one another in a healthy interplay of consolidation and generalization
that we briefly review herein.

The presence or absence of a coarse grid problem is a fundamental criterion by which

to classify domain decomposition methods. Algorithms lacking a coarse problem, like

the invertebrates, are invented with amazing variety, whenever a mathematically hostile

niche becomes ripe for parallel computation. Hierarchical algorithms are the vertebrates

of the domain decomposition kingdom, hardly without variety, but possessing certain
common features to which their success can be attributed.

Block diagonally preconditioned iterative methods are classical coarse-grid-free algo-

rithms. Nearly perfectly parallel if load-balanced, they function best when the coupling
between degrees of freedom within a block dominates the interblock coupling that is

ignored in the preconditioner and left for the outer acceleration method to account for.

For small numbers of subdomains and thus blocks, the iteration matrices of such meth-

ods fit the desirable category mentioned above of low-rank perturbations to the identity

operator. On the other hand, for elliptically dominated problems with roughly equili-

brated subdomain sizes, the condition number of the block diagonally preconditioned

problem still grows as H -2 (Refs. 6 and 56); such methods do not scale well in the fine

granularity regime targeted by emerging parallel supercomputers. Multiblock codes with

sequential local updating of overlapped regions are commonly used in aerodynamics and

likewise fall into this category. With many domains and multicoloring, they may be

parallelized, but the concomitant deterioration in convergence rate partially undoes the

parallel gains. We should also provide pointers to the significant literature based on the

use of Lagrange multipliers to enforce varying degrees of continuity between subdomain

solution patches. This is described, for instance, in Refs. 21 and 27, and effectively
illustrated on a distributed memory parallel machine in the latter.

After the number of levels, two additional major taxonomical criteria for domain

decomposition algorithms are the manner in which the boundary data of the subdomains

is updated and the order of the solution of the subproblems within a single iteration. They

may be overlapping or nonoverlapping, and additive or multiplicative. Variations abound

beyond these classifications as domain decomposition preconditioners are accelerated

by different methods and as tuning parameters are introduced in pursuit of practical

compromises, such as replacing exact subdomain solves with approximate solves.

Overlapping algorithms, such as the Additive Schwarz described above, make use of
extended boundaries that are updated by Dirichlet data. Both fine and coarse grid prob-

lems are like the original undecomposed problem in terms of their physical dimension

and discrete connectivity. Nonoverlapping algorithms require special treatment for the

lower dimensional objects (one-dimensional interfacial edges and two-dimensional inter-

facial planes in three-dimensional problems) that are distinguished wherever subdomains
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abut. Rapidlyconvergent algorithms are known in which these interfaces are updated

by approximations to pseudodifferential operators. An equivalence between overlapping
and nonoverlapping formulations of domain-decomposed iteration can be established for

certain problems (Refs. 4 and 15).

In additive (Jacobi-like) algorithms all subdomains can be updated simultaneously.

Multiplicative (Gauss-Seidel-like) algorithms accept partial sequentiality in updating sub-

domains (or interracial point sets thereof) in the interest of obtaining improved conver-
gence. Multicolorings can be applied to subdomains, just as they have classically been

applied to individual gridpoints, to produce algorithms with graded degrees of additivity

and multiplicativity, and correspondingly graded parallel granularity. Nonoverlapping

decompositions tend to produce algorithms with an outer multiplicative framework (of

which an example, the "tile algorithm," is furnished below) inasmuch as the interfacial

data need to be determined first to provide boundary data for the subdomain problems.

Most of the work both on interfaces and in subdomains within the appropriate multi-

plicative phase has concurrency of the same granularity as the decomposition itself. A

notable exception is the coarse grid solve for subdomain vertex values. Considerable

unity has been brought to the additive/multiplicative classification of domain decompo-
sition methods by the operator polynomial framework of Cai (Ref. 9). Kef. 1 contains

a collection of fundamental results on the spectra of sums and products of orthogonal

projection operators.

Two-dimensional Algorithms

In the past six years, there has been gratifying progress in the theory of domain

decomposition-preconditioned Kryiov algorithms for symmetric elliptic problems, and a

number of fast methods have been designed for which the condition number of the itera-

tion matrix is uniformly bounded or grows only in proportion to a power of (1 +log(H/h)),
where H is the diameter of a typical subdomain and h is the diameter of a typical element

into which the subdomains are divided, so that the ratio that appears in the bound is

roughly the number of discrete degrees of freedom along a subdomain interface. Such al-
gorithms are often called "optimal" or "nearly optimal" algorithms, respectively, though

we note that these adjectives pertain to the convergence rate only, and not to the overall

computational complexity. The nearly optimal algorithms may still retain terms that

are polynomial in 1/H or in H/h, depending upon how the component problems (coarse

grid, interfaces, subdomains) are solved. For nonsymmetric and indefinite problems, the
theory to date is less satisfactory but similar convergence results can be achieved by

applying pressure to the coarse grid solve, namely, by making it sufficiently fine.

A seminal result for the case of many subdomains is that of Bramble, Pasciak and

-Schatz in Ref. 6. For a self-adjoint problem in a two-dimensional region divided into

nonoverlapping subdomains, a conjugate gradient-accelerated multiplicative algorithm

consisting of two sets of subdomain solves, one set of interface solves, and one coarse

grid solve per iteration converges in O (1 + log(H/h)) iterations (the condition number

being the square of this quantity). A two-level hierarchical basis plays a crucial role in

the BPS-I preconditioner.
The BPS-I preconditioner has a matrix interpretation that we develop below with

reference to a blocked version of the original stiffness matrix of the system. Denote by

Au = f a piecewise linear finite element discretization of Eq. 11 created by a Galerkin

procedure using a non-hierarchical h-level basis. The degrees of freedom in u and f may

be permuted so that the coarse grid vertices are ordered last, the interior points first,
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Figure 18 - Decomposition of a uniformly gridded square domain into four subdo-

mains and the corresponding sparsity plot of the blocked matrix A (from Ref. 35).

and the interfaces in between, inducing on A the block structure:

AI AIB AIc )
A = At_t AB ABC (40)

Acl ACB Ac

(Because of assumed selfadjointness, ABt = AT, etc., but we prefer to keep the notation

general to accommodate nonselfadjoint operators below.) Note that the partitions vary
dramatically in size. If H is a quasi-uniform subdomain diameter and h a quasi-uniform

fine mesh width, the discrete dimensions of At, AB, and Ac are O(h-2), O(H-Zh-_),

and O(H-2), respectively. For the case of a uniformly gridded square domain subdivided

into four subsquares, the sparsity pattern of a sample A matrix is sketched in Fig. ,

assuming natural ordering within each subdomain and suppressing the homogeneous
Dirichlet boundary degrees of freedom. For this decomposition, there is a single interior

coarse grid vertex, so Ac is a scalar.

Consider, in addition, an alternative hierarchical basis with the usual elements of

local O(h)-diameter support for all degrees of freedom except for coarse grid vertices,

and with special O(H)-diameter elements replacing the local elements at the vertices.
Each special element is 1 at one vertex, 0 on all other vertices, 0 at all nodes interior

to any subdomain, and extends linearly along the edge connecting any adjacent pair of

vertices. (For a uniform decomposition into square subdomains, the special elements are

cross-shaped.) With respect to this modified basis, we have a modified stiffness matrix:

Az AtB Ate )
= ABt AB _tsc (41)

Ac, Ac.
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TheBPS-Ipreconditionercannowbewrittenin factoredform

(, A IA, O , 00)0 I 0 0 BB 0 -ABtA-[ 1 1 0 , (42)

0 0 I 0 0 Bc -,4c_A-_ _ 0 I

where it remains to define the new matrix blocks BB and Bc. We write the precon-

ditioner in this form to enable comparisons with other factored forms below. In an

actual implementation, the same action as B -1 defined above is carried out through

a process involving two solves on each subdomain per iteration, one of which satisfies

homogeneous boundary conditions with an inhomogeneous interior and the other in-

homogeneous boundary conditions with a homogeneous interior. Note that A_ "l is an

operation that can be performed independently on each subdomain, since (see Fig. ) At is
itself block-diagonal. Bc is, to within a scaling, simply a global coarse grid discretization

of the original operator. BB is a block diagonal matrix with one block for each interface.

Each interracial block is the discretization of a pseudodifferentia[ operator -- the square
root of the Laplace operator -- on the interface. See Ref. 3 for a discussion as to why

the square root of the Laplacian is a good preconditioner for the interfaces, and Ref. 6

for a complete convergence proof. BB is computationally convenient, since it can be

implemented in O((H/h) log(H/h)) operations via fast Fourier transforms. Note that in

implementing the preconditioner the O(H -2) x O(h -2) matrix Act forms ramp-weighted

averages of the interior values which serve as the right-hand side of the solve with Be.
Its transpose f41c linearly interpolates the coarse-grid vertex values along the edges to

serve as boundary values for the final set of interior solves with At. In the original algo-

rithm, Bramble, Pasciak & Schatz already proposed replacing A_ -l in the preconditioner

with another approximate block B7 l, where, for instance fast Poisson solvers might be
employed as spectrally equivalent replacements for non-constant-coefficient operators, or,

as in Ref. 53, a small number of multigrid cycles might be employed as an approximate

inverse. A theoretical discussion of this practice and its effect on convergence may be
found in Ref. 5.

To appreciate the low computational complexity and power of the BPS-I precondi-

tioner, note that the inverse of the full stiffness matrix, Eq. 40, from the nonhierarchical

basis can be written in analogous partially factored form with more complex intermediate

factors (Ref. 53):

(I-AI1AIB-ZllAIc ) ( I 0 0 ) ( AI 0 0 ) -1
0 I 0 0 I _SB1SBc 0 SB 0 ×

0 0 I 0 0 I 0 0 Tc

(, o o)( , oo)0 I 0 -ABIA'; t I 0 .

0 --ScBSB 1 I -AcIA-[ 1 0 I

(43)

The various first-level Schur complements are defined as S:B =- AB -- ABIA[1AtB,

SBc -=- ABc- ABIA'[1AIc, and SoB ==-AcB - ActA-[1AtB. Tc is a second-level Schur

complement defined in terms of Sc =- Ac - AcIA-I1AIc by Tc =- Sc - ScBS_ISBC.
These Schur complements are symmetric positive definite if A is (Ref. 19), hence guaran-
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teedto beinvertible,but theyaredense,henceimpracticalforlargeproblems.Because
theinversesof theSchurcomplementsarejust Green'sfunctionsfor tile staticallycon-
densedproblems,withfavorabledecaypropertiessimilarto thefull dimensionalGreen's
functions,anindustryof "probing"themto formreplacementsof imposedsparsityhas
beendeveloped(seeRef.18forarecentsystematicreview).In additionto adaptingto
thecoefficientstructureoftheproblem,probinghasthephilosophicalattractionof being
purelyalgebraicandcanleadtosubstantialadvantagesinsomeapplications.However,a
probingtechniqueoffixedsparsitypatterngenerallydoesnotscalewellastileresolution
of theproblemis increased.WithoutassemblingasingleSchurcomplement,theBPS-I
preconditionercomeswithinapolylogarithmfactorofbeingspectrallyequivalentto tile
full stiffnessmatrixin theoriginalbasis.BPS-Iisalsoa symmetrizablepreconditioner,
sothat whenA is itself symmetric, the preconditioned system may be accelerated with

the conjugate gradient method (Ref. 32).

The "tile algorithm" of Refs. 10 and 37 is an attempt to package some of the power of

the hierarchical BPS-I preconditioner into a more general form that does not depend on

nor exploit symmetry of A and does not require two subdomain solves per iteration. Such

generality is required before domain decomposition algorithms can be directly applied

to convection-diffusion problems. Much experimentation yields an effective form for the

preconditioner that can be written for comparison with the foregoing as follows:

(, A IA, A IA/c)(A,00)l0 I 0 0 TB 0 ×

0 0 I 0 0 Bc

(,o o )(,oo)0 I --(ABc -- NBC)Bc 1 0 I 0
0 0 I 0 WeB Wc

(44)

The new notation includes TB, a block diagonal matrix whose blocks are the discrete

approximations to the terms of the original differential whose derivatives are tangential
with the interface, and NBc, an approximation to the leftover terms whose derivatives

are normal to the interface. These normal terms are approximately interpolated from the

coarse grid solution. The nonnegative weight matrices Wc and WeB assemble a ramp-

weighted average of the function values along the interfaces for use as the right-hand side

of the coarse grid system. The row sums of WCB and Wc are unity. As in the BPS-I

method, it is tempting to replace the subdomain solves with approximate solves.

No theoretical convergence results have been given for the tile algorithm, but. a closely

related nonoverlapping multiplicative algorithm was proved in Ref. 11 to possess a condi-

tion number of O ((1 + log(H/h)) 3) for nonselfadjoint and/or indefinite problems. The

proof requires that the coarse grid be taken "sufficiently fine," i.e., that the subdomain

Reynolds number is sufficiently small in nonsymmetric problems, and that the oscilla-

tory behavior of the Green's function is resolved by the coarse grid in indefinite problems.

How "good" is convergence in O ((1 + log(H/h)) _') iterations, where p is near unity? Re-

call that for a self-adjoint elliptic problem with smooth coefficients, point Jacobi takes

O(1/h 2) iterations, point SSOR or conjugate gradients separately each take O(1/h), the
combination of conjugate gradients preconditioned with point SSOR takes O( 1/v/h_), and

multigrid takes O(1). The nonhierarchical methods all exhibit deteriorating convergence
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withthedemandforgreaterresolution.Byscalingthedecompositiongranularityparam-
eterH to the resolution parameter h, domain decomposition methods put the burden

of increasing resolution on an increasingly fine coarse grid. This is a "one-time" gain.

By recurring on the coarse grid, multigrid maintains optimal algebraic convergence and

simultaneously permits a small coarsest grid. Increasing communication-to-computation

ratios on the coarser grids eventually impose a practical bound on the depth of this

recursion. Multigrid depends on the ability to obtain discretizations of the operator

at each of many scales; two-level domain decomposition at only one scale in addition

to the finest. This intermediate scale H should most often be chosen with regard to
architectural limits.

The parallel complexity of domain decomposition, including local and global com-
munication costs per iteration has been considered in Refs. 34 and 35 with a particular

emphasis on the best way to carry out the coarse grid solve. This solve becomes the

parallel bottleneck when the number of subdomains is large. For moderate numbers of

processors, globally broadcasting the weighted right-hand side and solving redundantly
in parallel may be the optimal strategy. For large numbers of processors, precomputing

the local influence functions for the coarse grid degrees of freedom and storing them on

appropriate processors may be optimal (Ref. 37).
Results analogous to the polylogarithm convergence theorems above for nonoverlap-

ping preconditioners have also been proved for additive overlapping preconditioners. A

typical proof for selfadjoint problems employing either nonoverlapping or overlapping de-

compositions is based on bounding the smallest eigenvalue of the preconditioned system

from below and largest eigenvalue from above. As the ratio these extreme eigenvalues

approaches unity, the spectrum clusters, and a conjugate gradient-like method converges

rapidly. By Rayleigh quotient arguments, the relevant convergence parameter is the ratio
of the smallest 6 to the largest _ for which the double inequality

5(ur Bu) < (uT Au) <_ O(uT Bu) (45)

holds for all u, where A is the discrete stiffness matrix and B the discrete preconditioner.

If this ratio is independent of discretization and decomposition parameters, B is said

to be "spectrally equivalent" to A, and a rapidly convergent method obtains. Proofs

generally proceed by decomposing a general u into subspaces and bounding individual

pieces of the quadratic forms separately.

The logarithms in the nonoverlapping convergence bounds can be traced in the proofs

to the application of trace theorems to bound interracial quantities, and can be removed

altogether in overlapping methods. Hence, we have the famous Additive Schwarz result

of Dryja & Widlund (Ref. 22) establishing an optimal, multigrid-like O(1) condition
number for selfadjoint overlapping problems, and its extension to nonselfadjoint, possibly

indefinite problems by Cai (Ref. 8) for the same O(1), given some requirements on the
fineness of the coarse grid. Early Additive Schwarz proofs were restricted to smooth

coefficients and fixed overlap of O(H). Numerical experiments revealed these restrictions
to be pessimistic in many cases, and they are gradually being removed from the theory

through refined analysis. Proofs for nonselfadjoint problems depend on hypotheses that

render the symmetric part of A dominant over the skewsymmetric part. Again, numerical

experiments have frequently shown such hypotheses to be pessimistic; however, more
general theorems seem evasive.

To give an example of the convergence performance of the methods described in this
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H = 1/4 H = 1/8 ] H = 1/16

h = 1/32 1/64 1/128 1/32 1/64 1/128 1/64 1/128

t_e 21 23 31 27 35 50 21 34

CGK 38 37 37 33 30 33 22 24

ASM 33 35 35 29 26 25 19 18

MSM 15 15 14 16 15 15 10 10

H=I

ILU(0) 44 78 312

ILU(1) 28 44 99

ILU(2) 22 36 76

Table 1 - Iteration counts for solving the variable-coefficient, nonsymmetric indefi-

nite problem.

section on a difficult model problem, we consider a nonsymmetric, indefinite problem on

the uniformly gridded unit square from the test suite in Ref. 10:

1 sin(50_rx) sin(50_ry) _-_)0_((1 +_0 , sin(507rx)___) _ 0__((1 +

+20 sin(10 x) cos(10 y) - 20cos(10 x) sin(10 y) - 70u

/,
0 on 0_.

(46)

The coefficients of the second-order terms oscillate but do not change sign. The coeffi-

cients of the first-order terms represent physically a ten-by-ten array of closed convec-

tion cells, with no convective transport between cells. However, the interfaces of the

decomposition do not in general align with the convection cell boundaries, so this zero-

convective-flux property is not exploited. The operator £: is discretized by the five-point

central-difference method. Table shows the number of iterations required to obtain a

relative reduction in the Euclidean norm of the residual of 105 for problem sizes of up to

16,129 degrees of freedom.

Compared are the tile algorithm, the theoretically amenable version of the tile al-

gorithm in Ref. ll (denoted "CGK"), the Additive Schwarz method ("ASM") and a

multiplicative version of the Schwarz method ("MSM") obtained by a multicoloring of

the subdomains of Additive Schwarz. A fixed overlapping factor of HI4 in both x and y

directions is employed both Schwarz methods. For comparison's sake, the performances

of global ILU preconditioners with three successively greater levels of fill-in are also

shown. All methods are accelerated by GMRES without restarting. The global ILU pre-

conditioners are overwhelmingly outperformed by domain decomposition preconditioners

at fine mesh sizes, even apart from parallelism.

This problem is difficult for all of the methods, but the iteration count for MSM is

smaller than that of others by almost a factor of 2, or more. For a fixed coarse mesh size

H, some methods tend to require fewer iterations when the fine mesh is refined; others

require more. This behavior is believed related to the oscillatory coefficients in the

second-order terms of £:. The discretization becomes more stable when h gets smaller

relative to the wavelength of the oscillatory coefficients. The asymptotic mesh- and

decomposition-independence of the Schwarz methods is evident even at rather modest.

problem size.
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Three-dimensional Algorithms

In three dimensions, it is useful to distinguish between two types of hierarchical

algorithms: vertex-based and wirebasket. In the latter, more degrees of freedom than

simply the subdomain vertices participate in the nonlocal part of the preconditioner, such

as a collection of degrees of freedom shared by several subdomains along an edge. For

overlapping algorithms, convergence bounds and proofs carry over from two-dimensional

to three-dimensional vertex-based schemes with little new difficulty. Nonoverlapping

vertex-based algorithms encounter difficulty in three dimensions. The two-dimensional

bound of O ((1 + log(H/h)) 2) on the condition number must be replaced with a sharp

0 ((H/h)(l + log(H/h))). It is not difficult to trace the origin of the linear factor in the
discrete subdomain size, H/h, in estimates based on the form of Eq. 45; see Ref. 52. The

problem is inherent in estimating terms arising from vertex degrees of freedom in the

local basis by the corresponding terms in the hierarchical basis. The situation is less one

of special problems in three dimensions than it is one of fortuitous cancellation in two

dimensions: the two orders of differentiation in the dominant elliptic operator balance

the two length dimensions in the differential area element of the stiffness matrix integrals,

making the Galerkin inner product scale-invariant. In three dimensions, there is a power

of length left over in the differential volume element. There are different solutions to this

problem of linearly interpolating from a single vertex point over an entire subdomain.

One is to employ vertex elements of higher polynomial degree. Another is to involve

more points. Either way, a richer basis for the global problem is needed to allow better
approximation.

Significant extensions of nonoverlapping methods in three dimensions, eliminating the

linear growth in the condition number, are the wirebasket-based methods of Bramble,

Pasciak & Schatz (Ref. 7), Mandel (Refs. 45 and 44), and Smith (Ref. 52). The last

yields the most practical parallel algorithm, in that local and global subproblems of the

preconditioner can be solved concurrently. The bottleneck of a global problem solution

in three-dimensional problems -- even a problem whose size relative to total number of

degrees of freedom is very small -- can be very significant. The intricacy of wirebasket

preconditioners is beyond the scope of this overview to present. A key idea in all three

approaches is that the null spaces of the elemental contributions to the stiffness matrix
A and to the preconditioner B arising from each subdomain must be the same. For

problems of few subdomains in which each touches a segment of the physical Dirichlet

boundary, this condition is automatically satisfied by any reasonable preconditioner, since

the null spaces are trivial. However, the local stiffness matrix of an interior subdomain

of a scalar elliptic problem -- not tied down by any boundary values -- has as its null

space the constant functions, and multicomponent problems may have richer null spaces.

Preserving the null space in a preconditioner whose nonlocal component is more complex

than a piecewise linear vertex space complicates both the construction and the proof of

convergence.
Dryja and Widlund (Ref. 23) have proposed a unifying abstract framework for an-

alyzing the quality of elliptic preconditioners that work by decomposing the solution

space into subspaces that is elegant in its compactness. Let u be written as a sum of its
projections into suhspaces V_, k = 0,..., K, whose union is the full space:

K

uE V,u=_._uk, whereuk EVk, and V0+VI+'-'+VK =for all V.

k---0

(47)
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Leta(u, v) be a symmetric positive definite bilinear form and a solution u E V be sought
such that

a(u, v) = (/, v) (48)

for all v E V, where (., .) is the ordinary inner product. In matrix notation, this is just

Eq. 32. For each subspace V_, let a symmetric positive definite bilinear form bk(u, v)
be defined that approximates a(u, v) on Vk. We are willing to solve subspace problems

using the bk(., .) to precondition a(., .). There are three key questions that need to be

analyzed in any prospective choice of the bk(., ") (Ref. 23):

• How much do the subspaces overlap? Mathematically, how small can Cl be taken

such that, for all u E V, the sum of the energies of the subdomain preconditioner

inner products is bounded by C1 times the global energy,

Ebk(uk,uk) < Cla(u,u) ? (49)
k

. How well does bk(', ') approximate a(.,.) in its own subspace? Mathematically,
how small can C2 be taken such that, for all uk E Vk, and all k, C2 times the

energy of each subdomain preconditioner inner product bounds the energy of the

corresponding local component,

a(u_,uk) 5C2b_(uk,uk)? (5O)

• How orthogonal are the subspaces for k > 07 Mathematically, what is the smallest

spectral radius p(_) of the K x h" matrix e whose elements (ij satisfy for all ui C Vi,

uj E Vj, i,j= 1,...,K

(51)

Given C1, C2, and p(¢), the condition number of the Additive Schwarz-transformed

system can be bounded by
,, < (1 + p(O)C, C2. (52)

Equation 51 is the quantitative measure of orthogonality between subspaces promised

in the discussion following Eq. 37. lfsubspaces V/ and _ do not overlap, (ij is the cosine

of an angle between them. In this case, Eq. 51 is known as the strengthened Cauchy-

Buniakowskii-Schwarz (CBS) inequality. For a recent review of the role of the CBS

inequality in multilevel methods, see Ref. 25. If there is no distinguished space, V0, that

is exempt from the orthogonality test of Eq. 51, then the bound is instead

,_ < p(Oc1 c2. (53)

We illustrate this formalism for a familiar ideal case: the eigendecomposition in-

troduced earlier following Eq. 32. K is the dimension of the matrix A and each Vk

is the ray spanned by the eigenvector vk. The solution u has the decomposition u =
ul + u2 +" "+ UK : ul vl + uzv2 +- ' •+ UKVK. a(u, w) is the scalar W T Au and bk (u, w)

is the scalar wT)_ku in each subspace k.

29



_

• Notice that, in this example, the subspaces do not overlap at all. We may take CI
to be unity:

_-_ bk(uk, uk)---- Z Sku_ = _-"_ uTAuk = a(u,u).
k k k

(54)

• Notice that, in this example, bk(., .) perfectly approximates a(., .) in its own sub-
space. We may take C2 to be unity:

a(uk,uk) = uTAuk = $_u_ = bk(uk,uk). (55)

• Notice that, in this example, the subspaces are perfectly orthogonal. We may take
e to be the identity matrix:

a(ui, uj) = (ujvj)TAi(uiv,) = AiuiuivVvi = 0 for i # j,
a(ui,ui) = Aiu_ = v/a(ui,ui), a(ui,ui) otherwise. (56)

The spectral radius of _ is 1. Hence, we have for this trivial example that

<_ p(I). 1.1 = 1.

The condition number of this perfectly preconditioned system is unity.

(57)

Parallel Promise and Generalization_

Hierarchical domain decomposition algorithms can be effectively implemented on dis-

tributed memory multiprocessors. In 1990 (as reported in Ref. 38 using the tile algo-
rithm), a 103,201-unknown 2D elliptic problem partitioned into 768 subdomains was

solved in the sense of a 105-fold reduction in Euclidean norm of the residual on a 64-

processor Intel iPSC/860 in 12 iterations requiring 1.8 wall-clock seconds. Load balancing
was complicated by local uniform mesh refinement in the vicinity of a reentrant corner in

an L-shaped domain, preventing still better timing. Aggregate megaflop ratings across

different phases of the computation varied from a bottlenecked 2.0 Mflops on the solution

of the global coarse problem of O(103) degrees of freedom (one per subdomain, modulo
edge effects) to 362 Mflops on the purely parallel factorization of the interior blocks of

the preconditioner. (The 5.7 Mflops per node represented by the latter is recognized to

be near the realizable peak for compiled FORTRAN on the i860.) Between these extreme
phases of either extensive non-local communication or no communication whatsoever lies

the phase of the matrix-vector multiplication with the unpreconditioned stiffness matrix,

requiring local communication only. This ran at about 210 Mflops aggregate, or about

58% of the peak. The local parts of the preconditioning ran at an aggregate 271 Mflops.

In 1991, as reported in Ref. 53, a 1,030,512-unknown 3D elliptic problem on highly
non-convex domain partitioned into 244 subdomains was solved on a 32-processor Intel

iPSC/860 in 35 iterations requiring 88.5 seconds of wall-clock time. Single multigrid
V-cycles were employed for the local subdomain solves. It is interesting to note that a

simple diagonally preconditioned conjugate gradient solver required only about 2.7 times

as much wall-clock time to converge to an answer of the same quality, although the
condition number of the preconditioned system was more than a thousand times worse

(approximately 7.85 × 104 for the diagonal preconditioning versus approximately 74.1 for
the wirebasket-based preconditioning) and the number of iterations was 617 instead of
just 35.
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Anotherinterestingbenchmarkreportedin 1991(Ref.2) wasthesolutionof anel-
liptic problemin two dimensionscontaining1,979,649unknownsdividedinto 16,384
subdomainswithjumpsofup to threeordersofmagnitudebetweenpiecewiseconstant
coefficientsbetweenadjacentsubdomains.Thisrequired42wall-clocksecondsand27
iterationsonan8,192-processorMasParMP-1. In this SIMD environment, a hybrid

Additive Schwarz/multigrid algorithm was employed with the role for multigrid reversed

relative to the MIMD implementation above. Three multigrid V-cycles were employed

as an approximate solver for the coarse grid, rather than one V-cycle as an approximate
solver for the subdomains.

Results such as these indicate both the impressive scaling of convergence rates to truly

large problems for hierarchical methods, and their vulnerability to the large latency of

a distributed memory parallel computer in the execution of the hierarchical part of the

preconditioner. This is a tradeoff that must be carefully watched as high performance

fine granularity parallel supercomputers continue to evolve. As computer architectures

evolve, two-level domain decomposition algorithms can evolve flexibly and modularly

with them, replacing vulnerable components of the preconditioner with mathematically

nearby but computationally better adapted components. These replacements trade nu-

merical efficiency for implementation efficiency, but do not compromise the accuracy of
the solution since the A matrix is unaffected.

EXAMPLES OF PARALLEL COMPUTATIONAL FLUID DYNAMICS

In this section, two model computational fluid dynamics problems are culled from

earlier parallel domain decomposition papers co-authored with W. D. Gropp (Refs. 36

and 42) as illustrations of the technique. We do not represent that these examples
define the current state of the art in any particular aspect, whether of modeling, or of

convergence rate, or of parallel performance. Rather, they are presented as intermediate

points along a path designed to lead from the linear, scalar problems most amenable to
theoretical analysis and predominantly discussed above to more realistic challenges of

computational fluid dynamics.

For the solution of steady flow problems, robust variations of Newton's method,

assisted as necessary by parameter continuation such as artificial time or artificial viscos-

ity, are often preferable in terms of overall execution time to less fully coupled iterative
methods or associated explicit time-marching methods. The overall system written in
the form

F(¢) = O, (58)

where ¢ represents a column vector of all of the unknowns, may be solved efficiently by
a damped modified Newton method provided that an initial iterate ¢(0) sufficiently close

to the solution is supplied. The iteration is given by

¢(k+1) = ¢(k) + A(k)6¢(k), (59)

where

(_(_(k) = __(](k))-I F(¢(_)), (60)

where the matrix _(k) is an approximation to the actual Jacobian matrix evaluated at

the k th iterate. We refer to _¢(k) as the k eh update. When A(k) = l and j(k) __ j(k) _

__¢ (¢(k)), for all k, a pure Newton method is obtained. The iteration terminates when
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Figure 19 - Schematic of a composite grid for the backstep flow problem, with well-

developed inflow (left) and outflow (right) velocity profiles superposed. The upper

and lower surfaces are rigid walls. Refinement is employed near the step and in the

recirculation region. (The composite grids actually used to generate the data in the

following section are finer than shown here.)

some (scaled) 2-norm of 6¢(_) drops below a given tolerance. In well-conditioned systems

this will, of course, also be true of the norm of F(¢(k)).

From the discussion of Eqs. 59 and 60 we identify the five basic tasks that together

account for almost all of the execution time required by the Newton algorithm: (1)
DAXPY vector arithmetic, (2) the evaluation of residual vectors, (3) the evaluation of

Jacobians, (4) the evaluation of norms, and (5) the solution of linear equations involv-

ing the Jacobian matrix. The DAXPY requires no data exchanges between neighboring

points. The residual and Jacobian evaluation (performed analytically here) require only

nearest-neighbor data exchanges. The evaluation of norms and the linear system solution

require global data exchanges and are hence the proper focus of a parallel implementa-

tion. We concentrate on the linear system solution alone, employing the nonoverlapping

multiplicative tile algorithm in a block nc x nc sense, where there are n¢ degrees of
freedom at each gridpoint.

Incompressible Flow Over a Backstep

The flow over a backstep is a classic model problem from computational fluid dynam-

ics. Our channel has a flat no-slip wall opposite the step, a fully developed inlet profile

(located two step heights upstream), and a channel expansion ratio of 2 to 3 occurring

abruptly at the step (see Fig. ).

Inasmuch as the flow is well characterized as laminar, steady, and two-dimensional in

the Reynolds number range we model, we use the streamfunction-vorticity formulation

of the incompressible Navier-Stokes equations, in which velocity components (u, v) are
replaced with (¢,w) through

0¢ 0¢ Ou Ov

u=-_y, v= _-_x, andw-_yy O-_z"

The streamfunction satisfies the Poisson equation

(61)

- V_¢ + a_ = 0, (62)

and the vorticity the convection-diffusion equation (not in divergence form)

0¢ 0_ 0¢ 0w

Oy Ox Ox Oy
vV_w = 0. (63)
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C;lobal II Local Global [[ Local II (;lobal
x = 5,862IIN= 10,422 N = 22,922 IIN= 40,742IIx = 90,642

p=2 II p =4 p--8 II v=16 II p=32

8 49.3

Table 2- Number of GMRES iterations in the first Newton step, 11, and time, T (in

see) for the full nonlinear solution, over a roughly linearly scaled range of nmnbers

of processors, p, and numbers of degrees of freedom in the discretization, N.

Thus, n_ is 2 in this example. Note that both governing equations are elliptically dom-

inated at sufficiently small cell Reynolds number, Uherr/u. In Ref. 36 this problem is

solved using a pure Newton method directly from an initial guess consisting of tile in-

let profile extrapolated unchanged downstream, patched to an initially stagnant region

behind the step. Local uniform mesh refinement "h-type" refinement and second-order

upwinding "p-type" refinement are employed in the A matrix and the accuracy of the

solutions verified over a modest range of Reynolds numbers for which essentially two-

dimensional steady laminar solutions are known. Among the various tables and graphs

in Ref. 36, we focus on Table , obtained on a 32-processor Intel iPSC/860 using the tile

algorithm described above. The computational grid is circumscribed by a rectangular

domain spanned by 20 (square) tiles in the main flow direction and 6 tiles across the

channel. The step height is two tile edges high. Because the 4 x 2 tiles occupied by the

step itself are not included in the computational domain, the total number of tiles in the

decomposition is 120-8 = 112. The Reynolds number based on the step height and the

centerline inlet velocity is 100. The effective resolution parameter of the mesh, herr, is
the number of mesh intervals per unit step height. Labels "global" and "local" in the

table refer to the span of the refined regions; "global" is for a globally uniformly refined

grid based on the the listed herr and "local" is for a grid refined to the given herr only on

tiles abutting the step sidewall and in a triangular region downstream of the step, with
resolution twice as coarse elsewhere.

From the table, we observe first the logarithmic growtb of Ii in H/hefr. As the latter

goes through a pair of doublings, the number of Krylov iterations in the first. Newton

step increases linearly from 8 to 11 to 14. The three global grids are geometrically

self-similar and a common initial guess for the first Newton step makes the problems

algebraically similar as well, so the comparison is meaningful. We also observe that the
parallel scaling of the algorithm is far from perfect at present, though it contains grounds

for optimism. In a well-scaled algorithm, we would expect the execution time to remaiu

constant as problem size and processor force are increased in proportion. The relatively

large jump in execution time going from 16 to 32 processors can be attributed, in large

part, to poor load balance. The 112 equally-sized tiles cannot be evenly distributed

over 32 processors; until that point in the table, load imbalance is either nonexistent

(for the globally refined cases of 2 and 8 processors) or small (for the locally refined

cases of 4 and 16 processors, with accommodation for different discrete tile sizes). The

gradual deterioration of execution time over the first four cohmms is partly attributable

to the growing discrete dimension of the subdomain problems, which are handled with
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Figure 20 - Schematic of a confined non-premixed laminar jet flame.

polynomially complex exact solves, partly to a coarse grid system of constant size that

must be assembled with the coordination of an increasing number of processors, and

partly to the logarithmic convergence degradation. The first of these problems can be

addressed with multigrid subdomain solves. The raw performance of the algorithm-

machine combination is encouraging: full steady-state convergence of a well-resolved

(90,642-unknown) nonlinear problem in less than one minute.

Variable Density Chemically Reacting Flow

The second example is physically more complex but algorithmically simpler. From

Ref. 42, we report on a stripwise domain decomposition algorithm applied to a set of four

Jacobians drawn from an axisymmetric, buoyant laminar methane-air diffusion flame in a

high-aspect ratio geometry. Through an asymptotic model known as the "flamesheet," a

meaningful model containing only three degrees of freedom per point may be derived. (In

more detailed kinetics models, several dozens of chemical species may need representation

at gridpoints in high-temperature regions.) A schematic is given in Fig..

We again use a streamfunction-vorticity formulation, this time accommodating the
axisymmetric geometry and the variable density through the more general definitions:

0¢ 0¢ Ovr Ovz
prvr =--_z, prvz =-_r, w-Oz Or (64)

(For historical reasons, the sign convention of the streamfunction is reversed relative to

Eq. 61.)
The streamfunction equation, representing overall mass conservation, becomes

o(1 o, OLO,)0z -:-' +- ---i +w=o. (65)oz / Or ,rp 0',
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II aal-1 J31-2 II a31-3 a 3-1p 11 T I e 111 T e 11 T e I, T I e

1 6 25.1 1.00 14 56.1 1.00 14 56.2 1.00 18 309. 1.00

2 6 13.1 .96 15 31.6 .89 16 33.7 .83 18 158. .98

4 6 6.9 .91 16 17.2 .82 17 18.3 .77 18 80.8 .96

8 5 3.0 1.05 17 9.5 .74 20 11.3 .62 18 40.7 .95
16 23 30.7 .63

Table 3 - Number of linear (GMRES) iterations in solving the for Newton step

with the given Jacobian, l, time, T (in sec) for the Newton step, and overall ef-

ficiency (relative to undecomposed algorithm on one processor) a_s the number of

processors/subdomains p increases.

The vorticity equation, representing momentum conservation and written in diver-
gence form, is

" + '2 Oz az 2 :0. (6r)

The entire second line of this equation vanishes in constant density flows, but variable-

density source terms actually dominate the upstream influx of momentum in this exam-

ple. Density varies by nearly a factor of ten in room-temperature methane-air flames.

The equation for the flamesheet conserved scalar, representing the conservation of

internal energy and chemical species and written in divergence form, is

0 () ( )OS 8

-- rpD_z : O. (68)s - \ -DT) -8z

The three governing equations all possess the form "Laplacian in a dominant variable

plus first-order and/or source terms." Algebraic state relations giving the density p and

the variable transport properties p and D in terms of S supplement this system. (See

Ref. 42, and references therein.)

Solution of the system of governing equations employs pseudo-transient continuation,

a form of implicit time differencing with an adaptively increased At that transforms

the mathematical character of the system from parabolic to elliptic over the course of

the nonlinear evolution. We have recently argued that polyalgorithmic linear solvers

are appropriate in such problems, to exploit the changing character of the linear sys-

tems to be solved for the Newton corrections (Ref. 26). In this example, we employ
a simple stripwise tile decomposition with no coarse grid, and with the tangential in-

terface preconditioner TB replaced with an interface probe technique (Ref. 16) known

as projected-lP(1). Four sets of Jacobian matrices and residual vectors from a serial
computer run of the flamesheet code are dumped to disk for analysis by a separate par-

allel domain decomposition code that was run on a 16-processor shared memory Encore
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Multimax.A stripwisedecompositionwasproducedwithcutsnormalto thedominant
flowdirection,acrossthenarrowdimensionof thehigh-aspectratiodomain.Studiesof
modelproblemsin Ref. 37 show this to be more effective for relatively small numbers

of subdomains than a decomposition with interior vertices. Heuristically, the discrete

Green's functions are anisotropic, due to the high aspect ratio of the grid. Their tails

decay more rapidly in the axial direction, z, than in the radial direction, r. As implicit

aggregates of the parallel preconditioner, we therefore group together points of nearby z
coordinate.

Rather than scaled examples, we present fixed-size problems with increasing numbers

of subdomain strips, one per processor. Results for four different Jacobians are listed,
three from a highly nonuniform 31 x 31 grid and one from a highly nonuniform 63 x 63

grid. The latter system possesses 11,907 degrees of freedom. The first three Jacobians

come from different stages of the pseudo-transient continuation process, with very small,

moderate, and very large At, respectively. The third Jacobian ("J31-3") is by far the
worst conditioned of the set. We present iteration counts, execution times, and unsealed

parallel efficiencies.

Apart from superlinear speedup in the first problem (due to an improvement of con-

ditioning with increased decomposition that is generally unexpected with invertebrate

decompositions such as this one), terminal efficiencies are in the 60% range, implying

a ten-fold reduction in execution time on 16 processors. This sort of performance is
entirely acceptable on large shared memory machines of the Cray class, where a com-

bustion problem with realistic chemical kinetics must be shoehorned into memory, and

any processors not engaged in the combustion computation are idle anyway, for want of

memory.

CONCLUSIONS AND FUTURE PROSPECTS

The examples of the previous section demonstrate that domain decomposition algo-

rithms are already valuable on today's architectures. The introductory sections argue

that domain decomposition algorithms will be essential to scale PDE computations to

the next generation of massively parallel supercomputers, such as the Intel Paragon and

CM-5, in which fast processing elements and large networks will place a premium on

accessing off-processor data. High-order discretizations harmonize with the theme of hi-

erarchical solvers on such supercomputers, as algorithms must be recast to do as much

useful work as possible per point, as well as per iteration, within memory and communi-
cation bandwidth constraints.

From the first five international conferences on domain decomposition (Refs. 13, 14,

30, 31, and 40), it is clear that the theory has outstripped both practice and parallel
implementation of even model problems. The linear selfadjoint theory gives the appear-

ance of being nearly complete, as efforts now concentrate on such features as mesh angle

dependencies, overlap dependencies, and discontinuous coefficients. The nonselfadjoint,

indefinite theory is hung off of the selfadjoint theory by first assuring that the symmetric

part of the preconditioned operator is positive definite and dominant. This would be
unsatisfactory from the point of view of computational fluid dynamics, except for the

fact that many practical CFD codes are driven by a defect correction outer loop that

employs left-hand side operators of precisely these characteristics. In some CFD appli-

cations, only an elliptic pressure equation or a viscous fractional step will be directly
amenable to hierarchical domain decomposition analysis, but in such applications, these
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stepsaretypicallytheonlyonesthat defyconventionalparallelism,andthe remain-
ingstepscaneasilyemploydata-to-processormappingscompatiblewith thosereqnired
by domaindecomposition.Multicomponenttheoryis onlynascent.(rivenasystemof
equations,eachof whichcontainstheLaplacianofoneof theunknownsin whichit is
dominant,themulticomponentproblemdecouplesin theasymptoticlimit ofa finemesh.
TheformaltoolsofYavneh(Ref.57)helpuncoversuchstructurewhenit maybehidden
in thesystemof PDEsasposed,but theoreticalstimulationforalgorithmicdevelopment
ofthestronglycoupledcaseis needed.

Intheapplicationscommunity,domaindecompositionisstillbeingdrivenbygridding
andmodelingissues,notyet byconvergenceratesor parallelization.Asproblemsizes
continueto expand,theadvantageshierarchicaldomaindecompositionoffersin these
lattertworespectswillassumeaprominenceequalto thefirst two.

Progressfromlinear,selfadjoint,uniformlyrefinedscalarproblemsonageometrically
.simpletwo-dimensional region to nonlinear, nonselfacljoint, generally refined multicom-

ponent problems in geometrically complex three-dimensional regions are occurring one

generalization at a time. We may hope that theory and numerical experiment will con-

tinue to be mutual stimuli along this path, the former providing actual and heuristic

guidance on how to compute; the latter providing evidence of what may be provable.

If anything has become clear so far, it is that it is not sufficient to be a computer scien-

tist to do parallel computation of PDEs. PDE problems possess fundamental hierarchies

of data dependencies not reflected in absolute sparsity maps that must be understood

mathematically before an appropriate algorithm can be selected or even an appropriately

proportioned parallel computer designed. The parallel computational destiny of PDEs

is not in the languages, environments, or architectures of the day, but in the physics of
the problems they are modeling. The latter is unchanging, and all of the others are in

the process of converging to it, not necessarily monotonically.
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